Tetrahedron Letters,Vol.26,No.l,pp 39 - 42,1985 0040-4039/85 \$3.00 + .OO Printed in Great Britain

SYNTHESIS OF ARYL METHYLTHIO ETHERS EMPLOYING a-OXOKETENE DITHIOACETALS

R. Karl Dieter* and Yawares Jenkitkasemwong Lin

Department of Chemistry, Boston University, Boston, Massachusetts 02215

Abstract: Reaction of a-oxoketene dithioacetals with methallyl magnesium chloride followed by acid treatment affords simple and annulated aryl methylthio ethers. The methylthio substituent can be easily removed with Raney Ni, undergo a Ni catalyzed substitution reaction with Grignard reagents, or serve as a directing and protecting group in Friedel-Crafts acylation reactions.

We have, over the past few years, demonstrated that α -oxoketene dithioacetals¹ are versatile substrates for the sequential regioselective construction of new carbon-carbon bonds via a cascade of 1,2 and/or 1,4-nucleophilic addition reactions.^{2,3} In the course of developing a 1,3-carbonyl transposition sequence employing a-oxoketene dithioacetals it was discovered that 1,2-nucleophilic addition of methallyl magnesium chloride to \downarrow , followed by treatment with aqueous HBF_{4} , led not to a rearranged α , β -unsaturated thiol ester, but to an annulated aryl methylthio ether^{3b}. This transformation provides a direct synthetic route to simple and annulated benzenoid aromatic compounds with complete control of the alkyl substitution pattern (eq. 1).

In recent years, several annulation and cyclization approaches⁴ to substituted aromatic compounds have been developed as an alternative to aromatic substitution strategies⁵ which generally require protecting/deprotecting sequences. The present method, although similar to a recently reported aromatic annulation procedure employing vinylogous silyl esters^{4d}, affords an aryl methylthio ether in which the easily removed alkylthio substituent can be utilized in additional carbon-carbon bond forming reactions and serve as a protecting and/or a directing substituent 6 .

Entry	Substrate	$A1$ coho 1 $($ % Yield) ^a	$\begin{array}{c} \texttt{Cyclization} \\ \texttt{conditions} \end{array}$	Product(s) $(*$ Yield) ^a
	R $\mathsf{sch}_{\mathsf{3}}$			R
$\mathbf{1}$	$\stackrel{1}{\scriptstyle\sim}$ $R = SCH_3$	$92^{\rm c}$	A	87
$\boldsymbol{2}$			$\, {\bf B}$	64
$\ensuremath{\mathsf{3}}$	$\frac{2}{\sqrt{2}}$ $R = CH_3$	43	$\mathbf C$	$\bf{22}$
4			$\, {\bf D}$	28
	SCH_3 SCH ₃			SCH ₃
5	$_{\sim}^3$	89	$\mathbf D$	88
$\bf 6$	5 CH ₃ SCH ₃ $\frac{4}{\sqrt{2}}$	$85^{\rm C}$	$\pmb{\mathsf{A}}$	$\ddot{}$ COSCH ₃ $\mathsf{sch}_{\mathfrak{z}}$ 15 55
$\overline{\mathcal{I}}$	SCH ₃ \textsf{SCH}_3		$\, {\bf B}$	62 SCH ₃
8	$\frac{5}{2}$ $R = H$		$\mathbf D$	43
9	$R = CH_3$ \$CH ₃ C SCH ₃	80	$\mathbf{F}% _{0}$	47 COSCH ₃ + SCH ₃
10	$\frac{7}{3}$	$60^{\rm c}$	E	$12\,$ 37
$\bf 11$			$\, {\bf B}$	$47\,$
$\bf{12}$			D	52
${\bf 13}$			$\mathbf C$	29

Table 1. Synthesis of Aryl Methylthio Ethers and an Aromatic Hydrocarbon.

a_{yields} are based upon products purified by column chromatography (silical gel, petroleum ether) unless otherwise noted. $^{\text{b}}$ Procedure. A = THF, H₂O (4:1), 10% (v/v) HBF₄ (1 part). $B = HgCl_2$, 60 - 70°C, CH₃CN, lh. C = $BF_3 \cdot Et_2$ 0, CS₂, 0°C (1.5h) to room temperature (1.5h). $D = BF_3 \cdot Et_2O$, CH_3NO_2 , 0^0C , lh. $E = HgCl_2$, $60 - 70^0C$, aq CH_3CN . $F = ALCl_3$, CH_3NO_2 , 0^0C , lh. ^CBased upon crude product and determined by NMR.

The synthesis of aryl methylthio ethers and an aromatic hydrocarbon from a-oxoketene dithioacetals λ , λ - λ and vinylogous thiol ester λ , respectively, are listed in Table 1. Several points are noteworthy. First, the six membered ring α -oxoketene dithioacetals $\frac{1}{k}$ and $\frac{3}{k}$ afford excellent yields (entries 1,5) of aryl methylthio ethers which decrease to moderate yields (43-62%) for the five membered ring and acyclic substrates $4-7$ (entries 7,8,9,12). Second, for each substrate the yield of aromatic product is dependent upon the acid/solvent couple employed. α -Oxoketene dithioacetal λ afforded an excellent yield of aromatic product even under aqueous acidic conditions whereas α -oxoketene dithioacetals $\frac{1}{4}$ and $\frac{1}{4}$ afforded significant quantities of the rearranged α , β -unsaturated thiol esters (entries 1,6,10). For the latter substrates anhydrous HgC1₂/CH₃CN, BF₃.Et₂0/CH₃NO₂, or AlC1₃/CH₃NO₂ proved more effective (entries 7-9,11-12).

Vinyl sulfide $\frac{2}{v}$ could only be converted to the aromatic hydrocarbon in low yields (entries 3-4) which was consistent with an earlier unsuccessful attempt to use vinyl sulfides in an aromatic annulation process^{4d}. The higher yields obtained with α -oxoketene dithioacetals presumably reflects the greater facility for aromatization via methanethiol elimination from an intermediate cyclohexadiene dithioacetal than from the corresponding intermediate sulfide. Treatment of aryl methylthio ether 2 with W-2 Raney Ni cleanly effected reductive cleavage of the methylthio substituent (eq. 2). Consequently, the ketene dithioacetal of ℓ -menthone [80 %, [α] $_{\rm D}$ -195 $^{\circ}$ (c 2.6, hexane)] was converted to the thioether (entry 5) which afforded a mixture of <u>trans</u>-(-)/<u>cis</u>-(+)-calamenenes 12 and 13194%, [α]_n -/1 (c 0.2, hexane)] upon Raney Ni (W-2) desulfurization. The alkylthio group can also be removed after serving as a protecting and directing substituent for the Friedel-Crafts acylation reaction (eq. 4). Here Raney Ni desulfurization is, however, complicated by reduction of the carbonyl and the yield of ketones

 λ_A^A a-b and alcohols λ_A^5 a-b is dependent upon the substrate structure. Treatment of 0.31 mmol of λ Q with 1.0 g of Raney Ni (EtOH, rt, 0.5 h) yielded λ ⁴ a (13%) and λ ₂ a (65%) while reduction of λ (0.28 mmol, 2.0 g Raney Ni, EtOH, 1 day) afforded a good yield of ketone λ ⁴ (59%) and only a trace of the alcohol $\frac{15}{6}$ (4%). Pyridinium chlorochromate oxidation (CH₂C1₂, rt, 7 h) of λ 5a afforded λ 4a in 83% yield providing a solution to the over reduction problem.

Finally, reaction of thioether β with methyl magnesium bromide in the presence of dichloro $[1,2-bis$ (diphenylphosphino)ethane] nickel(II)⁹ under reflux affords the aromatic hydrocarbon in 66% yield (eq. 3). This reaction provides an alternative to the use of substituted vinyl sulfides for the synthesis of regiospecifically substituted aromatic hydrocarbons.

In summary, a-oxoketene dithioacetals can be converted to simple and annulated aryl methylthio ethers in good yields. The substitution $3b$ and nucleophilicity of the participating olefin will limit the generality of the cyclization step and a vinyl group may not cyclize. The methylthio substituent of the aromatic products can be exploited in carbon-carbon bond forming processes involving either direct or electrophilic aromatic substitution reactions.

Acknowledgements: We are pleased to acknowledge support of this investigation by the National Science Foundation (Grant CHE-8219093).

References

- l. For the synthesis of α-oxoketene dithioacetals see: R.K. Dieter, <u>J. Org. Chem., 46</u>, 5031-5033 (1981).
- 2. (a) R.K. Dieter, J.R. Fispaugh, and L.A. Silks, <u>Tetrahedron Lett., 23</u>, 3751 (1982). (b) R.K. Dieter and L.A. Silks, J. Org. Chem., 48 , 2786 (1983). (c) R.K. Dieter and J.W. Dieter, J.C.S. Chem. Commun., 1378 (1983).
- 3. (a) R.K. Dieter and Y. Jenkitkasemwong, $\frac{1}{1}$ etrahedron Lett., $\frac{23}{22}$, 3747 (1982). (b) R.K. Dieter, Y. Jenkitkasemwong Lin, and J.W. Dieter, <u>J. Org. Chem., 49</u>, 3183 (1984).
- 4. (a) M.A. Tius, A. Thurkauf, and J.W. Truesdell, <u>Tetrahedron Lett., 23</u>, 2023 (1982). (b) K. Takaki, M. Okada, M. Yamada, and K. Negoro, <u>J.C.S. Chem. Commun.</u>, 1183 (1980). (c) T.H. Chan, and P. Brownbridge, $J.$ Am. Chem. Soc., 102 , 3534 (1980). (d) M.A. Tius, and S. Ali, <u>J. Org. Chem.</u>, 47, 3163 (1982). (e) S. Danishefsky, I. Harayama, and R.K. Singh, J. Am. Chem. Soc., 101, 7008 (1979).
- 5. M. Tashiro, Synthesis, 921 (1979).
- 6. M.R. Euerby and R.D. Waigh, <u>J.C.S. Chem. Commun.</u>, 127 (1964).
- 7. The synthetic mixture of trans:cis diastereomers was calculated to be 91:9 01:04:18 using of a measured or calculated value of -82° or -96° , respectively, for the optical rotation of trans-(-)-calamenene. The relative peak heights of the isopropyl doublets in the NMR spectrum (trans: 0.66, 0.84. cis: 0.74, 1.01) indicate an 82:18-86:14 ratio of trans: cis diastereomers. For optical rotations and NMR data see: K.D. Croft, E.L. Ghisalberti, C.H. Hocart, P.R. Jefferies, C.L. Raston, and A.H. White, J.C.S. Perkin Trans. 1, 1267 (1978).
- 8. For previous syntheses of the calemenenes see: (a) M. Artico, G. De Martino, and V. Nacci, Chem. and Ind., 1601 (1968). (b) S.V. Bhatwadekar, K.G. Gore, K.K. Chakravarti, and S.K. Paknikar, <u>Indian J. Chem., 10</u>, 1111 (1972). (c) reference 4d.
- 9. (a) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayaski, A. Fujioka, S. Kodama, I. Nakajima, (a) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayaski, A. fujioka, S. Kodama, T. Mim;ura, Mim; A. Minato, and M. Kumada, <u>Bull. Chem. Soc. Jpn., 49</u>, 1958 (1976).
H. Sugimura, and H. Okamura, <u>Chem. Lett.,</u> 1447 (1979).

(Received in USA 13 Auqust 1984)