Tetrahedron Letters, Vol. 26, No.1, pp 39 - 42, 1985 Printed in Great Britain

SYNTHESIS OF ARYL METHYLTHIO ETHERS EMPLOYING ∝-OXOKETENE DITHIOACETALS

R. Karl Dieter * and Yawares Jenkitkasemwong Lin

Department of Chemistry, Boston University, Boston, Massachusetts 02215

Abstract: Reaction of α -oxoketene dithioacetals with methallyl magnesium chloride followed by acid treatment affords simple and annulated aryl methylthio ethers. The methylthio substituent can be easily removed with Raney Ni, undergo a Ni catalyzed substitution reaction with Grignard reagents, or serve as a directing and protecting group in Friedel-Crafts acylation reactions.

We have, over the past few years, demonstrated that α -oxoketene dithioacetals¹ are versatile substrates for the sequential regioselective construction of new carbon-carbon bonds via a cascade of 1,2 and/or 1,4-nucleophilic addition reactions.^{2,3} In the course of developing a 1,3-carbonyl transposition sequence employing α -oxoketene dithioacetals it was discovered that 1,2-nucleophilic addition of methallyl magnesium chloride to 1, followed by treatment with aqueous HBF₄, led not to a rearranged α , β -unsaturated thiol ester, but to an annulated aryl methylthio ether^{3b}. This transformation provides a direct synthetic route to simple and annulated benzenoid aromatic compounds with complete control of the alkyl substitution pattern (eq. 1).

In recent years, several annulation and cyclization approaches⁴ to substituted aromatic compounds have been developed as an alternative to aromatic substitution strategies⁵ which generally require protecting/deprotecting sequences. The present method, although similar to a recently reported aromatic annulation procedure employing vinylogous silyl esters^{4d}, affords an aryl methylthio ether in which the easily removed alkylthio substituent can be utilized in additional carbon-carbon bond forming reactions and serve as a protecting and/or a directing substituent⁶.

Entry	Substrate	Alcohol (% Yield) ^a	Cyclization conditions ^b	Product(s) (% Yield) ^a
	SCH3			R
1	$\frac{1}{2} R = SCH_3$	92 ^c	А	87
2	∿ 3		В	64
3	$\frac{2}{2}$ R = CH ₃	43	с	22
4	<u>√</u>		D	28
	SCH3		Ţ	SCH3
5	3 ~	89	D	88
6		85 [°]	A	+ scн ₃ созсн ₃
7	\sim		В	62
	R SCH3		γ	SCH ₃
8	5 R = H $6 R = CH_3$	00	D	43 47
9	6 R = CH ₃ 0 SCH ₃ SCH ₃	80	F	+ sch ₃
10	7 ~	60 ^c	E	37 12
11	\sim		В	47
12			D	52
13			С	29

Table 1. Synthesis of Aryl Methylthio Ethers and an Aromatic Hydrocarbon.

^aYields are based upon products purified by column chromatography (silical gel, petroleum ether) unless otherwise noted. ^bProcedure. A = THF, H₂O (4:1), 10% (v/v) HBF₄ (1 part). B = HgCl₂, 60 - 70°C, CH₃CN, lh. C = BF₃·Et₂O, CS₂, 0°C (1.5h) to room temperature (1.5h). D = BF₃·Et₂O, CH₃NO₂, 0°C, lh. E = HgCl₂, 60 - 70°C, aq CH₃CN. F = AlCl₃, CH₃NO₂, 0°C, lh. ^cBased upon crude product and determined by NMR. The synthesis of aryl methylthio ethers and an aromatic hydrocarbon from α -oxoketene dithioacetals \downarrow , \Im - χ and vinylogous thiol ester χ , respectively, are listed in Table 1. Several points are noteworthy. First, the six membered ring α -oxoketene dithioacetals \downarrow and \Im afford excellent yields (entries 1,5) of aryl methylthio ethers which decrease to moderate yields (43-62%) for the five membered ring and acyclic substrates \oiint - χ (entries 7,8,9,12). Second, for each substrate the yield of aromatic product is dependent upon the acid/solvent couple employed. α -Oxoketene dithioacetal \downarrow afforded an excellent yield of aromatic product even under aqueous acidic conditions whereas α -oxoketene dithioacetals \oiint and χ afforded significant quantities of the rearranged α , β -unsaturated thiol esters (entries 1,6,10). For the latter substrates anhydrous HgCl₂/CH₃CN, BF₃·Et₂O/CH₃NO₂, or AlCl₃/CH₃NO₂ proved more effective (entries 7-9,11-12).

Vinyl sulfide 2 could only be converted to the aromatic hydrocarbon in low yields (entries 3-4) which was consistent with an earlier unsuccessful attempt to use vinyl sulfides in an aromatic annulation process^{4d}. The higher yields obtained with α -oxoketene dithioacetals presumably reflects the greater facility for aromatization via methanethiol elimination from an intermediate cyclohexadiene dithioacetal than from the corresponding intermediate sulfide. Treatment of aryl methylthio ether 2 with W-2 Raney Ni cleanly effected reductive cleavage of the methylthio substituent (eq. 2). Consequently, the ketene dithioacetal of ℓ -menthone [80 %, $[\alpha]_D$ -195° (c 2.6, hexane)] was converted to the thioether (entry 5) which afforded a mixture ⁷ of trans-(-)/cis-(+)-calamenenes⁸ 12 and 13[94%, $[\alpha]_D$ -71° (c 0.2, hexane)] upon Raney Ni (W-2) desulfurization. The alkylthio group can also be removed after serving as a protecting and directing substituent for the Friedel-Crafts acylation reaction (eq. 4). Here Raney Ni desulfurization is, however, complicated by reduction of the carbonyl and the yield of ketones

 $1\frac{4}{2}$ a-b and alcohols $1\frac{5}{2}$ a-b is dependent upon the substrate structure. Treatment of 0.31 mmol of 10 with 1.0 g of Raney Ni (EtOH, rt, 0.5 h) yielded 14a (13%) and 15a (65%) while reduction of 11 (0.28 mmol, 2.0 g Raney Ni, EtOH, 1 day) afforded a good yield of ketone 14b (59%) and only a trace of the alcohol 15b (4%). Pyridinium chlorochromate oxidation (CH₂Cl₂, rt, 7 h) of 15a afforded 14a in 83% yield providing a solution to the over reduction problem.

Finally, reaction of thioether $\frac{9}{2}$ with methyl magnesium bromide in the presence of dichloro [1,2-bis(diphenylphosphino)ethane] nickel(II)⁹ under reflux affords the aromatic hydrocarbon in 66% yield (eq. 3). This reaction provides an alternative to the use of substituted vinyl sulfides for the synthesis of regiospecifically substituted aromatic hydrocarbons.

In summary, α -oxoketene dithioacetals can be converted to simple and annulated aryl methylthic ethers in good yields. The substitution^{3b} and nucleophilicity of the participating olefin will limit the generality of the cyclization step and a vinyl group may not cyclize. The methylthic substituent of the aromatic products can be exploited in carbon-carbon bond forming processes involving either direct or electrophilic aromatic substitution reactions.

<u>Acknowledgements</u>: We are pleased to acknowledge support of this investigation by the National Science Foundation (Grant CHE-8219093).

References

- For the synthesis of α-oxoketene dithioacetals see: R.K. Dieter, <u>J. Org. Chem.</u>, <u>46</u>, 5031-5033 (1981).
- (a) R.K. Dieter, J.R. Fispaugh, and L.A. Silks, <u>Tetrahedron Lett.</u>, <u>23</u>, 3751 (1982).
 (b) R.K. Dieter and L.A. Silks, <u>J. Org. Chem.</u>, <u>48</u>, 2786 (1983). (c) R.K. Dieter and J.W. Dieter, <u>J.C.S. Chem. Commun.</u>, 1378 (1983).
- (a) R.K. Dieter and Y. Jenkitkasemwong, <u>Tetrahedron Lett.</u>, <u>23</u>, 3747 (1982).
 (b) R.K. Dieter, Y. Jenkitkasemwong Lin, and J.W. Dieter, <u>J. Org. Chem.</u>, <u>49</u>, 3183 (1984).
- (a) M.A. Tius, A. Thurkauf, and J.W. Truesdell, <u>Tetrahedron Lett.</u>, 23, 2823 (1982).
 (b) K. Takaki, M. Okada, M. Yamada, and K. Negoro, J.C.S. Chem. Commun., 1183 (1980).
 (c) T.H. Chan, and P. Brownbridge, <u>J. Am. Chem. Soc.</u>, <u>102</u>, 3534 (1980). (d) M.A. Tius, and S. Ali, <u>J. Org. Chem.</u>, <u>47</u>, 3163 (1982). (e) S. Danishefsky, T. Harayama, and R.K. Singh, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 7008 (1979).
- 5. M. Tashiro, Synthesis, 921 (1979).
- 6. M.R. Euerby and R.D. Waigh, J.C.S. Chem. Commun., 127 (1984).
- 7. The synthetic mixture of trans: cis diastereomers was calculated to be 91:9 or 82:18 using a measured or calculated value of -82° or -96°, respectively, for the optical rotation of trans-(-)-calamenene. The relative peak heights of the isopropyl doublets in the NMR spectrum (trans: 0.66, 0.84. cis: 0.74, 1.01) indicate an 82:18-86:14 ratio of trans: cis diastereomers. For optical rotations and NMR data see: K.D. Croft, E.L. Ghisalberti, C.H. Hocart, P.R. Jefferies, C.L. Raston, and A.H. White, J.C.S. Perkin Trans. I, 1267 (1978).
- For previous syntheses of the calemenenes see: (a) M. Artico, G. De Martino, and V. Nacci, <u>Chem. and Ind.</u>, 1601 (1968). (b) S.V. Bhatwadekar, K.G. Gore, K.K. Chakravarti, and S.K. Paknikar, <u>Indian J. Chem.</u>, <u>10</u>, 1111 (1972). (c) reference 4d.
- (a) K. Tamao, K. Sumitani, Y. Kiso, M. Zembayaski, A. Fujioka, S. Kodama, I. Nakajima, A. Minato, and M. Kumada, <u>Bull. Chem. Soc. Jpn.</u>, 49, 1958 (1976). (b) H. Takei, M. Miura, H. Sugimura, and H. Okamura, <u>Chem. Lett.</u>, 1447 (1979).

(Received in USA 13 August 1984)